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Abstract. A reaction kinetic model is proposed for height selection of heteroepitaxially growing nanometer-
thick quantum dots. The model describes the growth by a set of rate equations for the combined size and
height distributions of the dots. In addition to nucleation and growth, the model includes a coarse-grained
conversion rate incorporating kinetics of height changes. With suitably chosen rate coefficients the model
reproduces qualitatively the experimentally observed height-selected size distributions and their evolution.
The results support the view that the height selection and the form of the size distribution both result from
the oscillating energy barrier for the transformation of dots of different heights, and this transformation
barrier is considerably larger in magnitude than oscillations in the electronic energy due to quantum well
states in the dot.

PACS. 81.07.Ta Quantum dots – 68.65.Hb Quantum dots – 68.35.Md Surface thermodynamics, surface
energies

1 Introduction

Quantum dots (QDs) have been a subject of much re-
search effort during the last decade due to their potential
use for novel technological applications. Recent advanced
surface probing techniques have been able to resolve the
equilibrium shapes of the QDs and the electronic proper-
ties of optimal-sized dots (see e.g. Refs. [1–3]). A case of
particular interest is the formation of tower-shaped struc-
tures in deposition of Pb on Si(111) [4,5] or Cu(111) [6,7].
The height selection observed in these cases has been as-
signed to the quantum size effect (QSE), where certain
QD heights are favored due to minima in the confinement
energy of electrons as a function of the QD height. There
are also experiments which have reported a related phe-
nomena of stability of layer heights due to quantum con-
finement on Pb/Si(111) [8] and Pb/Cu(111) [9], and also
charge oscillations as a function of height [10]. The origins
of the size-selection is by now well understood owing to
many studies focused on the electronic properties of QDs,
which thus forms the first step toward understanding the
controllability and applicability of a single QD [3,11].

In the modeling of self-assembled growth of nanostruc-
tures the knowledge of energetics is yet a starting point.
Recently, there has been much progress in modeling the
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growth and decay of nanostructures by the so-called step
models, where surfaces are treated as step-like geometric
structures on which the adatoms move. In these models,
the key quantities are the step chemical potential, gov-
erning the detachment and attachment of adatoms, and
the interlayer mass transport [12,13]. The step models
have been quite successful in explaining the basic fea-
tures of nanostructure growth, particularly in case of the
shape preserving morphologies and their scaling proper-
ties [12,13], but also in the constrained evolution, where
shape transformations are due to mass redistribution in
the evolving structures [14]. In addition, also the contin-
uum models of nanostructure growth have advanced con-
siderably and are now able to give insight on the evo-
lution of the morphology as well as spatial ordering of
QDs [15–17].

The few existing kinetic models which can be applied
to describe the Stranski-Krastanov growth of QDs are
those of Dobbs et al. [18], Koduvely and Zangwill [19], and
Heyn [20]. Dobbs et al. concentrated on growth of semi-
conducting material by considering the average densities
of adatoms and 2D and 3D clusters. In their model adatom
attachment and detachment are treated in a self-consistent
way, and the 3D clusters are formed from the 2D ones
with the strain-dependent conversion rate. Koduvely and
Zangwill [19] generalized the approach of Dobbs et al. [18]
by including adatom detachment from 2D and 3D dots and
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and taking the dot-dot interactions into account in a phe-
nomenological way. They remark, however, that it is diffi-
cult to obtain the size distributions due to a large number
of coupled differential equations (which in the present case
form a stiff problem for numerical integration). Heyn [20]
introduced rate equations for the size distributions, but
he considered only the distributions in the base area and
separately the evolution of the average adatom density
on top of 2D dots. However, the kinetics of the height
selection in growth of QDs and consequently the evolu-
tion of the size distribution when height selection occurs
is still a less understood subject, and at present there is
no model which reproduces the experimentally observed
QD size distribution and its evolution in case of QSE.

2 The model

We describe here a reaction kinetic model for calculation
of the size distribution and height selection of QDs, formed
by the Stranski-Krastanov growth in presence of wetting
layer. In particular, we focus on the case of height-selected
QDs as recently realized experimentally as Pb structures
grown on Si(111) [4,5] and Cu(111) [6,7] surfaces. To this
end, we model QD formation (in its 3D-growth phase)
with a resolution of one monolayer. The reaction kinetic
model describing the transitions between different QD
heights should in addition to the height changes describe
also the growth of the structures in the lateral direction.
The model takes therefore into account adatom attach-
ment into a QD (of any height) increasing also the QD
base area A, nucleation of new dots of height one (dimers),
and the QD height conversion from h to h + 1 decreasing
the base area in the process. We assume that all QDs have
circular base areas given by A = V/h, where V is the total
volume of the QD (i.e. the total number of atoms s times
the atomic volume). During the conversion event the base
area and the height change such that A → Ah/(h+1) thus
keeping the total number of atoms constant. The conver-
sion event is assumed to proceed more rapidly than any
other event corresponding to the approximation that the
relaxation events leading to a new equilibrium configura-
tion are instantaneous. In order to keep the model as sim-
ple as possible at this stage, we have left out e.g. adatom
detachment and downward conversion h → h−1, but they
can be incorporated into the model. The corresponding set
of rate equations are:
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where n1 is the adatom concentration in the first layer,
n

(h)
s is the distribution of QDs with mass s ≥ 2 and height

h ≥ 1 (so that the base area of the dot is A = s/h), F the

deposition flux, θ0 the surface coverage (area covered by
the QD bases) and D is the adatom diffusion coefficient.
The effective rate for the transition h → h + 1 is given
by rate coefficient γ

(h)
s . The rate coefficient for adatom

detachment to dot with size s and height h, the so called
capture numbers (compare with Refs. [18–20]), are given
by σ

(h)
s for dots with base area A = s/h. It should be

noted that the first term F (1 − θ0) in equation (1) and
the third term in equation (2) take into account the fact
that when dots are formed and grow large enough, most
of deposition flux impinges directly into QDs and does
not increase the adatom concentration on a surface. Thus
direct deposition increases only the total mass of a QD.
The effect of wetting layer on growth is of no direct impor-
tance here, so we have assumed throughout the calculation
that adatom coverage of wetting layer is 1 ML (compare
Eqs. (1), (2) with corresponding Eqs. (1), (2) in Ref. [20]).
The set of rate equations are in some respects similar to
those used previously by Heyn [20], also to those intro-
duced by Dobbs et al. [18] and Kodulevy et al. [19], but
the major difference is now that our equations (1), (2)
span the whole configuration space of sizes s and heights
h on equal footing.

Next we specify the rate coefficients which contain the
input parameters of the model. The capture numbers are
chosen to be related to the geometry through the base are
A = s/h of the island so that

σ(h)
s = (s/h)µ, (3)

where µ = 1/3 correspond to three dimensional dots. Now
σ1 ≡ σ

(h)
1 gives the capture number of a single adatom.

Since our final goal is to model height oscillations in QD
formation, a reasonable choice is an oscillating energy bar-
rier for upward conversion rates γ

(h)
s . The upward conver-

sion rate for h = 1 is given by

γ(1)
s = πr2 exp

[
Ei + (2Ee − E0 log(A)/

√
A

kBT

]
, (4)

where r =
√

A/π is the radius of a dot with base area
A = s/h and the strain parameters for the first layer
Ei = 1.0 eV, Ee = 0.17 eV, E0 = 3.28 eV are taken
from reference [18]. For the heights h > 1 the upward
conversion rate is given by

γ(h)
s = πr2 exp

[−Eb[1 − cos (2π(h − 1)/H)]
kBT

]
, (5)

where parameters are otherwise similar as in equation (4)
but now Eb = 0.50 eV is the effective energy barrier
for upward conversion, and H is the period of barrier
oscillations. The value for Eb is chosen so that the height
distribution and its oscillations resemble qualitatively the
experimentally observed situation within a reasonable
temperature range. Therefore, the parameters are not cho-
sen for a specific system, but rather to show that values in
overall agreement with typical values for different systems
can reproduce the generic behavior of dot growth.
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The choice of an oscillating conversion rate γ
(h)
s re-

quires further discussion. On Pb/Si(111) it has been
shown by ab initio calculations that the total electronic
energy of a QD oscillates with an amplitude of 15 meV [7].
On Pb/Si(111) recent experiments indicate differences be-
tween even and odd layer heights [21]. Using ab initio
calculations this is addressed to diffusion barrier oscilla-
tions roughly at even or odd height quantum dots with a
small oscillation amplitude [21]. Also, in the case of nano-
wires preferred wire configurations have been proposed
to emerge due to quantum confinement effects leading to
an oscillating conductance and charge distribution [22].
On the other hand, on Pb/Si(111) the measurements [4]
indicate the effective activation barrier for a transition
between 5 and 7 layer QDs to be of the order of 0.3 eV.
Thus, although in the microscopic level the barrier for such
transformations is related to energetics of the quantum
well states, the barrier which is most useful for describing
the growth of the structures is rather an effective bar-
rier for mesoscopic structure transformations. Moreover,
the conversion rate includes the temperature-dependent
strain term only for the first layer. It is straightforward
to include a strain-dependent activation energy in γ

(h)
s for

h > 1, and contribution from QD-QD interactions [19].
At present, there is no coarse graining method, which
produces a prediction for such a mesoscopic transforma-
tion barrier, but the present model pins-down its expected
magnitude, needed to explain the growth kinetics.

3 Results

Instead of direct integration, it is advantageous to solve
the rate equations using the particle coalescence method
(PCM) [23–25], where all adatoms and clusters are kept
in a list containing their sizes. Since spatial information is
neglected, there is no need to construct a physical lattice.
Each event has its corresponding rate, for example for
adatom attachment events we have the total rate ΓAtt =∑

i Γi, where Γi is the adatom attachment rate for the
QD of size i. To choose an event, we use a rejection-free
Monte Carlo algorithm [26], which allows us to choose a
successful event at every simulation step.

At low temperatures, the upward conversion rate in
our model is much slower than the attachment rate for
adatoms onto dots. Thus, in this regime the conversion
rate (probability for transition h → h+1) can be omitted
and growth proceeds as in the usual irreversible case. QDs
nucleate but grow only in lateral size when coalescence is
not included. Since at high coverages the deposition flux
increases the size of the dots, the average base area grows
linearly for θ � 1 ML. This reflects the fact that at low
temperatures growth proceeds in a layer-by-layer mode in
agreement with experiments [9]. However, at higher tem-
peratures the conversion rate becomes important. As 2D
dots get larger, they begin to convert into 3D structures
due to size-dependent part in the conversion rate. This
leads to the saturation of the average area, since a dot
with a large enough base area has a high probability to

Fig. 1. The average base area as a function of deposited cov-
erage at temperatures T = 300, 350, 400, 450 and 500 K (from
top to bottom). The inset shows the corresponding total QD
densities (from bottom to top). Note that when temperature
is high enough, the QD density increases monotonically.

convert into a multilayer structure reducing the base area
in the process. These results are illustrated in Figure 1,
which shows the temperature dependence of the average
base area of a dot 〈A〉 as a function of the (total) de-
posited coverage θ between T = 300–500 K corresponding
to R = D/F = 105, where D is the adatom diffusion co-
efficient. The base area is defined as the area that a dot
occupies on a surface. The behavior is rather regular as
a function of coverage, resembling the scaling behavior of
the island growth. Assuming such scaling in form 〈A〉 ∼ θβ

it is possible to extract the exponent β ≈ 0.79 measured
from the initial part of the data. This value happens to
be close the growth exponent β = 2/(3 − 2µ) calculated
in submonolayer growth of islands with capture rate given
by equation (3) [27]. Here, we used µ = 1/3 in the adatom
attachment rate which gives β = 6/7 ≈ 0.85, which is
close to extracted value β ≈ 0.79. However, in present
case this is more a suggestive conjecture than an exact re-
sult, because the base area of dots we are dealing with is
limited to sizes too small to allow defining reliable scaling
results. More important than the scaling are the following
qualitative notions: (1) at low temperatures the average
base area grows roughly linearly for large enough cover-
ages since most of adatoms coming from deposition flux
impinge directly into existing dots; (2) at high tempera-
tures the average base area saturates when the conversion
begins to dominate and this saturation value depends on
temperature such that larger the temperature, smaller the
saturation value of 〈A〉. Finally, the inset shows the total
dot densities as a function of coverage, where it can be seen
that (3) at lower temperatures the QD density is smaller
than at high temperatures since the average base area is
larger.

These results for the average base area and the total
density of dots are in agreement with Heyn [20] and Dobbs
et al. [18]. Heyn found a saturation of the dot size corre-
sponding to the maximum of the size distribution as a
function of coverage. The saturation value is reached after
the size decreases from the maximum value, in agreement
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Fig. 2. The height distribution at T = 500 K and θ = 3, 7, and
10 ML (from bottom to top). The distribution corresponds to
the number of quantum dots with height h covering a certain
fraction of the surface.

with our results (see the high temperature curves in
Fig. 1). The density of 3D dots also levels off as the cov-
erage approaches 2 ML (maximum coverage in Ref. [20]),
thus indicating saturation regime at higher coverages. Our
simulations show the saturation of the 3D dot density as
a function of coverage also found by Dobbs et al. [18].

Experimentally, the most striking aspect of the het-
eroepitaxial Pb QDs is the height selection as discussed
in the introduction. Our model is capable of reproducing
height oscillations in 3D growth at high temperatures. In
Figure 2 the height distribution is shown at T = 500 K as
a function of the deposited coverage θ = 3, 7, and 10 ML,
and using the oscillation period H = 3 for the upward
conversion rate γ

(h)
s . The period is clearly seen in the fig-

ure where the distance between the peaks is H layers. As
expected, the height distribution broadens as the coverage
increases. At large coverages the deposition flux increases
the sizes of the existing quantum dots and thus the num-
ber of low dots is small. We find that the term F (1 − θ0)
in the equation for the adatom density is crucial in the
sense that it suppresses nucleation of new dots at large
coverages. With a constant flux term F only, the height
distribution always develops a tail at small heights. These
oscillations are in qualitative agreement with the experi-
ments on Pb/Cu(111) [6].

The emergence of height oscillations is directly related
to the oscillating barrier of the conversion rate γ

(h)
s (which

denotes the probability for transition h → h+1). If a con-
stant barrier is used instead, the oscillations disappear and
only a single-peaked height distribution is observed. The
amplitude of the barrier oscillations Eb for γ

(h)
s affects

only quantitative results; using Eb = 0.3 eV the height
oscillations appear already at T = 300 K, but the form of
the height distribution is the same. The same applies also
to the average base area. In the strain-dependent part of
γ

(h)
s the most crucial parameter is Ei which denotes the

nucleation barrier for the critical dot size i to form (here
we have used i = 1). For values Ei 
 1.0 eV the first

layer dot density has larger values than for Ei ≈ 1.0 eV.
In all cases, however, the form of the height distribution is
robust. Therefore, the final conclusion is that in order to
have the height selection, effective barrier for conversion
between different heights needs to be a magnitude larger
than the characteristic energy scale of energy oscillation
in quantum well states. However, this is to be expected
because the barriers involved in the present model are en-
ergy barriers for mesoscopic transformations of the whole
structures. It remains a further theoretical challenge to
relate such barriers to microscopic energy oscillations of
quantum well states through controlled coarse graining
procedures.

We have additionally checked the robustness of our re-
sults by modifying the conversion rate such that the strain
part takes the same form for every layer, in which case the
oscillation pattern does not considerably change in form
as temperature increases, but the height distribution only
extends into larger values for given coverage. We have also
included downward conversion into the model such that
the QDs can decrease their height with a similarly oscil-
lating rate τ

(h)
s for downward conversion. Irrespective of

whether τ
(h)
s is in- or out-of-phase with respect to the up-

ward rate γ
(h)
s the density of QDs having height h > 1 is

very low. Thus, in the view of the present model it seems
that downward conversion does not play any role in the
formation of QD height oscillations during growth. How-
ever, their role becomes crucial during relaxation period
when the flux is turned off.

4 Conclusions

In summary, we have developed a reaction kinetic model
for the growth of nanostructures and evolution of their
size distribution. The model includes the relevant generic
processes into a rate equation model, which can be effi-
ciently solved by Monte Carlo methods. In particular, we
concentrate here on the scenario of an oscillating energy
barrier controlling the upward mass flux along the sides of
the growing QD. Our results suggest that this could be the
key factor explaining the experimentally observed height
oscillations and the associated evolution of size distribu-
tion on Pb/Cu(111) and bilayer growth on Pb/Si(111). In
particular, our results for the height distributions are in
qualitative agreement with height oscillations observed in
the Pb/Cu(111) system [6] with minimal number of pro-
cesses included in the model. In addition of reproducing
the size distributions, the results support the conclusion
that the energy scale for height selection is much larger
than oscillations in the electronic energy due to quantum
well states in the dot.
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